Sains Malaysiana 53(12)(2024): 3307-3318
http://doi.org/10.17576/jsm-2024-5312-14
Aktiviti Antimalaria dan Skizontisida Sebatian Analog 4-aminokuinolina-pirano[2,3-c]pirazol terhadap Plasmodium knowlesi A1H1 dan Analisis Dok Molekul
(Antimalarial and Schizonticidal Activities of 4-aminoquinoline-pyrano[2,3-c]pyrazole Analogs against Plasmodium knowlesi A1H1 and Molecular Docking
Analysis)
SITI NURFATEHAH KAMAL1,#, AMATUL HAMIZAH ALI2,#, NG YEE
LING3, MOHD ASYRAF SHAMSUDIN2, SITI NUR HIDAYAH JAMIL2,
HANI KARTINI AGUSTAR1, NURUL IZZATY HASSAN2, MOHD RIDZUAN
MOHD ABD RAZAK4, LAU YEE LING3 & JALIFAH LATIP2,*
1Jabatan Sains Bumi dan Alam Sekitar, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor, Malaysia
2Jabatan Sains Kimia, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor, Malaysia
3Jabatan Parasitologi, Fakulti Perubatan, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
4Pusat Penyelidikan Perubatan Herba, Institut Penyelidikan Perubatan, Kompleks Institut Kesihatan
Negara, Kementerian Kesihatan Malaysia, 40170 Shah Alam,
Selangor, Malaysia
Received: 4 December 2023/Accepted:
7 October 2024
#These authors contributed
equally
Abstrak
Kemunculan jangkitan zoonosis Plasmodium knowlesi dan perkembangan kerintangan parasit terhadap ubat antimalaria sedia ada memacu penyelidikan dinamik bagi meneroka dan mencari agen antimalaria yang baharu. Penghibridan farmakoforik ialah suatu strategi gabungan dua sebatian yang berlainan farmakofor untuk mencegah kerintangan parasit terhadap ubat antimalaria sedia ada dan mengurangkan kesan sampingan ubat antimalaria. Lima terbitan kuinolina telah menunjukkan aktiviti antimalaria terhadap parasit malaria iaitu kesan analog 4-aminokuinolina-pirano[2,3-c]pirazol terhadap strain Plasmodium falciparum 3D7 dan
K1. Oleh itu, objektif kajian ini adalah untuk menilai aktiviti antimalaria dan skizontisida analog 4-aminokuinolina-pirano[2,3-c]pirazol terhadap strain parasit zoonotik iaitu Plasmodium knowlesi A1H1 yang telah diadaptasi dalam darah manusia. Kesemua analog kuinolina telah diuji secara in vitro terhadap P. knowlesi A1H1 menggunakan plasmodium laktat dehidrogenase (pLDH) dan ujian pematangan skizon (SMA). Analisis dok molekul analog kuinolina turut dilakukan pada satu protein sasaran, Plasmodium sp. pengangkut rintang-klorokuina (PfCRT)
yang bertujuan untuk memahami kemungkinan potensi protein ini sebagai sasaran antimalaria analog kuinolina tersebut. Hasil yang diperoleh menunjukkan bahawa analog 2 dan 5 (EC50 = 0.15-0.16
µM) mempunyai kesan antiplasmodium yang poten terhadap P. knowlesi. Tambahan lagi, analog 2 dan 5 mempunyai kesan skizontisida yang poten terhadap P. knowlesi berbanding sebatian analog yang lain. Suatu kajian menggunakan analisis dok in silico menunjukkan bahawa analog 2 dan 5 mempunyai konformasi pengikatan sempurna dalam tapak domain transmembran-1 PfCRT dengan masing-masing mempunyai nilai afiniti pengikatan -9.1 kcal/mol.
Hasil kajian ini mencadangkan bahawa analog 2 dan 5 menghalang pertumbuhan parasit zoonotik P. knowlesi dan menyasarkan protein parasit PfCRT sebagai sasaran molekul berpotensi.
Kata kunci: Aktiviti antiplasmodium; dok molekul; malaria; Plasmodium knowlesi; skizontisid;
4-aminokuinolina-pirano[2,3-c]pirazol
Abstract
The emergence of the zoonotic
infection Plasmodium knowlesi, as well as the
development of parasite resistance to current antimalarial drugs, is driving
the dynamic research into a new antimalarial agent. Pharmacophoric
hybridization is a combination strategy to prevent drug resistance and
drug-drug interactions. Five quinoline derivatives namely
4-aminoquinoline-pyrano[2,3-c]pyrazole analogues showed potent antimalarial activities against Plasmodium
falciparum strains 3D7 and K1. The objective of this study is to evaluate
the antimalarial and schizonticidal activities of
4-aminoquinoline-pyrano[2,3-c]pyrazole analogs against the human-adapted zoonotic parasite
strain, Plasmodium knowlesi A1H1. All
quinoline analogs were tested in vitro against P. knowlesi A1H1 using the plasmodium lactate
dehydrogenase (pLDH) and schizont maturation assays
(SMA). Molecular docking analysis of these quinoline analogs on a protein target, Plasmodium sp. chloroquine resistant transporter (PfCRT), was performed to understand the possible
antimalarial target of these quinoline analogs. The
results showed that analogs 2 and 5 have potent antiplasmodial effects against P. knowlesi (EC50 = 0.15-0.16 µM). Furthermore,
compared to all test compounds, analogs 2 and 5 had good schizonticidal effects. A study using in
silico docking showed that analogs 2 and 5 had perfect binding conformations in the PfCRT’s transmembrane domain 1 site, with binding affinities of -9.1 kcal/mol,
respectively. The results of this study suggested that quinoline analogs 2 and 5 inhibited the growth of the zoonotic
parasite P. knowlesi and targeted the parasite
protein PfCRT as a potential molecular target.
Keywords: Antiplasmodial activities; malaria; molecular docking; Plasmodium knowlesi; schizonticide; 4-aminoquinoline-pyrano[2,3-c]pyrazole
REFERENCES
Aguiar, A.C.C., Santos, R.D.M., Figueiredo, F.J.B., Cortopassi,
W.A., Pimentel, A.S., França, T.C.C., Meneghetti, M.R. & Krettli,
A.U. 2012. Antimalarial activity and mechanisms of action of two novel
4-aminoquinolines against chloroquine-resistant parasites. PLoS ONE 7(5): e37259.
Amir, A., Russell, B., Liew, J.W.K., Moon,
R.W., Fong, M.Y., Vythilingam, I., Subramaniam, V., Snounou, G. & Lau, Y.L. 2016. Invasion characteristics
of a Plasmodium knowlesi line newly isolated
from a human. Scientific Reports 6(1): 24623.
Antony, H.A., Topno,
N.S., Gummadi, S.N., Sankar, D.S., Krishna, R. & Parija, S.C. 2019. In silico modeling of Plasmodium falciparum chloroquine resistance transporter protein and
biochemical studies suggest its key contribution to chloroquine resistance. Acta tropica 189: 84-93.
Chauhan, K., Sharma, M., Saxena, J., Singh,
S.V., Trivedi, P., Srivastava, K., Puri, S.K.,
Saxena, J.K., Chaturvedi, V. & Chauhan, P.M. 2013. Synthesis and biological
evaluation of a new class of 4-aminoquinoline–rhodanine hybrid as potent anti-infective agents. European Journal of Medicinal
Chemistry 62: 693-704.
Coulibaly, A., Diop,
M.F., Kone, A., Dara, A., Ouattara, A., Mulder, N., Miotto,
O., Diakite, M., Djimde, A. & Amambua-Ngwa,
A. 2022. Genome-wide SNP analysis of Plasmodium falciparum shows
differentiation at drug-resistance-associated loci among malaria transmission
settings in southern Mali. Frontiers in Genetics 13: 943445.
Daneshvar, C., Davis, T.M., Cox-Singh, J., Rafa’ee, M.Z., Zakaria, S.K., Divis,
P.C. & Singh, B. 2009. Clinical and laboratory features of human Plasmodium knowlesi infection. Clinical Infectious
Diseases 49(6): 852-860.
de Villiers, K.A. & Egan, T.J. 2021. Heme detoxification in the malaria parasite: A target for
antimalarial drug development. Accounts of Chemical Research 54(11):
2649-2659.
Domínguez, J.N., Charris,
J.E., Caparelli, M. & Riggione,
F. 2002. Synthesis and antimalarial activity of substituted pyrazole derivatives. Arzneimittelforschung 52(6):
482-488.
Dorn, A., Vippagunta,
S.R., Matile, H., Jaquet,
C., Vennerstrom, J.L. & Ridley, R.G. 1998. An
assessment of drug-haematin binding as a mechanism for inhibition of haematin
polymerisation by quinoline antimalarials. Biochemical Pharmacology 55(6): 727-736.
Ecker, A., Lehane,
A.M., Clain, J. & Fidock, D.A. 2012. PfCRT and its role in antimalarial drug resistance. Trends
in Parasitology 28(11): 504-514.
Fatih, F.A., Staines, H.M., Siner,
A., Ahmed, M.A., Woon, L.C., Pasini,
E.M., Kocken, C.H., Singh, B., Cox-Singh, J. &
Krishna, S. 2013. Susceptibility of human Plasmodium knowlesi infections to anti-malarials. Malaria Journal 12: 425.
Folarin, O.A., Bustamante, C., Gbotosho, G.O., Sowunmi, A., Zalis, M.G., Oduola, A.M.J. & Happi, C.T. 2011. In vitro amodiaquine
resistance and its association with mutations in pfcrt and pfmdr1 genes of Plasmodium falciparum isolates from Nigeria. Acta Tropica 120(3): 224-230.
Fong, K.Y. & Wright, D.W. 2013.
Hemozoin and antimalarial drug discovery. Future Medicinal Chemistry 5(12): 1437-1450.
Gupta, P. & Vasudeva, N. 2010. In
vitro antiplasmodial and antimicrobial potential
of Tagetes erecta roots. Pharmaceutical Biology 48(11): 1218-1223.
Insuasty, B., Ramírez, J., Becerra, D., Echeverry, C., Quiroga, J., Abonia,
R., Robledo, S.M., Vélez, I.D., Upegui,
Y., Muñoz, J.A. & Ospina, V. 2015. An efficient synthesis of new
caffeine-based chalcones, pyrazolines and pyrazolo [3, 4-b][1,
4] diazepines as potential antimalarial, antitrypanosomal and antileishmanial agents. European Journal of Medicinal Chemistry 93:
401-413.
Kaur, K., Jain, M., Reddy, R.P. & Jain,
R. 2010. Quinolines and structurally related heterocycles as antimalarials. European
Journal of Medicinal Chemistry 45(8): 3245-3264.
Kim, J., Tan, Y.Z., Wicht,
K.J., Erramilli, S.K., Dhingra, S.K., Okombo, J., Vendome, J., Hagenah, L.M., Giacometti, S.I.,
Warren, A.L. & Nosol, K. 2019. Structure and drug
resistance of the Plasmodium falciparum transporter PfCRT. Nature 576(7786): 315-320.
Lau, Y.L., Tan, L.H., Chin, L.C., Fong,
M.Y., Noraishah, M.A.A. & Rohela,
M. 2011. Plasmodium knowlesi reinfection in
human. Emerging Infectious Diseases 17(7): 1314.
Makarov, V., Manina,
G., Mikusova, K., Möllmann,
U., Ryabova, O., Saint-Joanis,
B., Dhar, N., Pasca, M.R., Buroni,
S., Lucarelli, A.P. & Milano, A. 2009. Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis. Science 324(5928): 801-804.
Makler, M.T. & Hinrichs, D.J. 1993.
Measurement of the lactate dehydrogenase activity of Plasmodium falciparum as an assessment of parasitemia. The American
Journal of Tropical Medicine and Hygiene 48(2): 205-210.
Ministry of Health Malaysia (MOH). 2023.
https://www.sinarharian.com.my/article/257431/edisi/terengganu/kes-malaria-meningkat-75-peratus-di-terengganu
Moon, R.W., Hall, J., Rangkuti,
F., Ho, Y.S., Almond, N., Mitchell, G.H., Pain, A., Holder, A.A. &
Blackman, M.J. 2013. Adaptation of the genetically tractable malaria pathogen Plasmodium knowlesi to continuous culture in human
erythrocytes. Proceedings of the National Academy of Sciences 110(2):
531-536.
Rao, S.N., Head, M.S., Kulkarni, A. &
LaLonde, J.M. 2007. Validation studies of the site-directed docking program LibDock. Journal of chemical information and modelling 47(6):2159-2171.
Ravindar, L., Hasbullah,
S.A., Rakesh, K.P. & Hassan, N.I. 2022. Pyrazole and pyrazoline derivatives as antimalarial agents: A key review. European
Journal of Pharmaceutical Sciences 2022: 106365.
Rezali, N.S., Zahrin,
N.A., Ali, A.H., Ling, N.Y., Agustar, H.K. &
Ling, L.Y. 2023. Antimalarial assessment of certain 1, 2, 4-triazoles and benzoquinolones against Plasmodium knowlesi A1H1. Journal of Science and Mathematics Letters 11(1): 43-50.
Roux, A.T., Maharaj, L., Oyegoke, O., Akoniyon, O.P.,
Adeleke, M.A., Maharaj, R. & Okpeku, M. 2021.
Chloroquine and sulfadoxine–pyrimethamine resistance
in Sub-Saharan Africa - A review. Frontiers in Genetics 12: 668574.
Shamsuddin, M.A., Ali, A.H., Zakaria, N.H., Mohammat, M.F., Hamzah, A.S., Shaameri,
Z., Lam, K.W., Mark-Lee, W.F., Agustar, H.K., Mohd Abd Razak, M.R. & Latip, J. 2021. Synthesis, molecular docking, and
antimalarial activity of hybrid 4-Aminoquinoline-pyrano [2, 3-c] pyrazole derivatives. Pharmaceuticals 14(11): 1174.
Shibeshi, M.A., Kifle,
Z.D. & Atnafie, S.A. 2020. Antimalarial drug
resistance and novel targets for antimalarial drug discovery. Infection and
Drug Resistance 13: 4047-4060.
Singh, B. & Daneshvar,
C. 2013. Human infections and detection of Plasmodium knowlesi. Clinical Microbiology Reviews 26(2): 165-184.
Singh, J., Mansuri, R., Atul, P.K., Kumar,
M. & Sharma, A. 2021. Development of selective inhibitors of crucial drug
target Phosphoethanolamine methyltransferase of Plasmodium
falciparum based on Chemo informatics and in vitro experiments. Journal
of Pharmacognosy and Phytochemistry 10(2): 298-309.
Singh, K., Kaur, H., Smith, P., de Kock,
C., Chibale, K. & Balzarini,
J. 2014. Quinoline–pyrimidine hybrids: Synthesis, antiplasmodial activity, SAR, and mode of action studies. Journal of Medicinal Chemistry 57(2): 435-448.
Smit, F.J. & N’Da,
D.D. 2014. Synthesis, in vitro antimalarial activity and cytotoxicity of
novel 4-aminoquinolinyl-chalcone amides. Bioorganic & Medicinal
Chemistry 22(3): 1128-1138.
Starčević, K., Pešić,
D., Toplak, A., Landek, G., Alihodžić, S., Herreros, E., Ferrer, S., Spaventi, R. & Perić, M.
2012. Novel hybrid molecules based on 15-membered azalide as potential
antimalarial agents. European Journal of Medicinal Chemistry 49:
365-378.
Strekowski, L., Mokrosz,
J.L., Honkan, V.A., Czarny,
A., Cegla, M.T., Wydra,
R.L., Patterson, S.E. & Schinazi, R.F. 1991.
Synthesis and quantitative structure-activity relationship analysis of 2-(aryl
or heteroaryl) quinolin-4-amines, a new class of anti-HIV-1 agents. Journal
of Medicinal Chemistry 34(5): 1739-1746.
Tiwari, V.S., Joshi, P., Yadav, K., Sharma,
A., Chowdhury, S., Manhas, A., Kumar, N., Tripathi,
R. & Haq, W. 2021. Synthesis and antimalarial
activity of 4-methylaminoquinoline compounds against drug-resistant parasite. ACS
Omega 6(20): 12984-12994.
Tobin, R., Harrison, L.E., Tully, M.K., Lubis, I.N., Noviyanti, R.,
Anstey, N.M., Rajahram, G.S., Grigg, M.J., Flegg, J.A., Price, D.J. & Shearer, F.M. 2023. Updating
estimates of Plasmodium knowlesi malaria risk
in response to changing land use patterns across Southeast Asia. MedRxiv https://doi.org/10.1101/2023.08.04.23293633
Van Schalkwyk, D.A., Riscoe,
M.K., Pou, S., Winter, R.W., Nilsen, A., Duffey, M.,
Moon, R.W. & Sutherland, C.J. 2020. Novel endochin-like
quinolones exhibit potent in vitro activity against Plasmodium knowlesi but do not synergize with proguanil. Antimicrobial
Agents and Chemotherapy https://doi.org/10.1128/aac.02549-19
Vinindwa, B., Dziwornu,
G.A. & Masamba, W. 2021. Synthesis and evaluation
of Chalcone-Quinoline based molecular hybrids as potential anti-malarial
agents. Molecules 26(13):4093.
Warhurst D.C. 2001. The parasite. Travelers’ Malaria. p. 104.
World Health Organization (WHO). 2022.
World Malaria Report. https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022 Accessed on January 1,
2023.
World Health Organization (WHO). 2021. WHO
working group on late-stage development for malaria vaccines to reduce disease
burden: Phase 3 considerations on the path to licensure and wide-scale
implementation: report on a virtual meeting, 12 and 19 April 2021.
https://apps.who.int/iris/handle/10665/354356. Accessed on January 1, 2023.
World Health Organization (WHO). 2001. In
vitro micro-test (Mark III) for the assessment of the response of Plasmodium
falciparum to chloroquine, mefloquine, quinine, amodiaquine, sulfadoxine (No. CTD/MAL/97.20 Rev. 2 2001).
https://apps.who.int/iris/handle/10665/67373. Accessed on January 1, 2023.
*Corresponding author; email:
jalifah@ukm.edu.my